MyD88 predicts chemoresistance to paclitaxel in epithelial ovarian cancer
نویسندگان
چکیده
INTRODUCTION Early identification of chemoresistance in patients with ovarian cancer is of utmost importance in order to provide them with the most appropriate therapy. Recently, we described the expression of MyD88 in ovarian cancer cells that were resistant to the cytotoxic agent paclitaxel. In addition to chemoresistance, in MyD88 positive ovarian cancer cells, paclitaxel stimulates growth and production of proinflammatory cytokines. The objective of this study was to determine the correlation of MyD88 expression in primary and recurrent epithelial ovarian cancers with the response to carboplatin and paclitaxel combination chemotherapy. METHODS Tumors are heterogeneous structures that contain different cell populations, thus rendering the identification of specific tumor markers difficult. Using laser capture microdissection, pure cancer cells were isolated from ovarian malignant tumors that were obtained from 20 patients at the time of surgery. The microdissected cells were evaluated for the expression of MyD88, FasL, and XIAP by western blot analysis. RESULTS Protein expression was observed in samples containing as low as 500 cells. The results were correlated with the clinical course of those patients. It was evident that MyD88 expression in ovarian cancer cells accurately predicts a poor response to paclitaxel chemotherapy as shown by a short progression-free interval and overall survival. CONCLUSION We describe for the first time a molecular approach to identify paclitaxel chemoresistance. Toxicity from agents without therapeutic benefit can be avoided by identifying those patients who will not respond to a specific agent. Molecular markers will enable us to design individualized treatments and improve overall survival.
منابع مشابه
NSAID-activated gene 1 mediates pro-inflammatory signaling activation and paclitaxel chemoresistance in type I human epithelial ovarian cancer stem-like cells
Epithelial ovarian cancer (EOC) remains the most lethal gynecologic malignancy in developed countries. Chronic endogenous sterile pro-inflammatory responses are strongly linked to EOC progression and chemoresistance to anti-cancer therapeutics. In the present study, the activity of epithelial NF-κB, a key pro-inflammatory transcription factor, was enhanced with the progress of EOC. This result ...
متن کاملAtractylenolide-I Sensitizes Human Ovarian Cancer Cells to Paclitaxel by Blocking Activation of TLR4/MyD88-dependent Pathway
Paclitaxel, a known TLR4 ligand, leads to activation of TLR4/MyD88-dependent pathway that mediates chemoresistance and tumor progression in epithelial ovarian carcinoma (EOC). Atractylenolide-I (AO-I), a novel TLR4-antagonizing agent, inhibits TLR4 signaling by interfering with the binding of LPS or paclitaxel to membrane TLR4 of human leukocytes. In this study, AO-I was found to attenuate pacl...
متن کاملPaclitaxel-exposed ovarian cancer cells induce cancer‑specific CD4+ T cells after doxorubicin exposure through regulation of MyD88 expression.
Ovarian cancer has the highest mortality rate among gynecological malignancies due to high chemoresistance to the combination of platinum with taxane. Immunotherapy against ovarian cancer is a promising strategy to develop from animal-based cancer research. We investigated changes in the immunogenicity of paclitaxel-exposed ovarian cancer cells following exposure to other chemotherapeutic drugs...
متن کاملPhenotypic modifications in ovarian cancer stem cells following Paclitaxel treatment
Epithelial ovarian cancer (EOC) is the most lethal gynecologic malignancy. Despite initial responsiveness, 80% of EOC patients recur and present with chemoresistant and a more aggressive disease. This suggests an underlying biology that results in a modified recurrent disease, which is distinct from the primary tumor. Unfortunately, the management of recurrent EOC is similar to primary disease ...
متن کاملUp-Regulation of Periostin and Reactive Stroma is Associated with Primary Chemoresistance and Predicts Clinical Outcomes in Epithelial Ovarian Cancer Running title: Reactive stroma signature predicts chemoresistance
Purpose: Up to one third of ovarian cancer patients are intrinsically resistant to platinum-based treatment. However, predictive and therapeutic strategies are lacking due to a poor understanding of the underlying molecular mechanisms. This study aimed to identify key molecular characteristics that are associated with primary chemoresistance in epithelial ovarian cancers. Experimental Design: G...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Yale Journal of Biology and Medicine
دوره 79 شماره
صفحات -
تاریخ انتشار 2006